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Figure 8.30: Example of convex hull detection. (a) The processed region—polygon ABCDEA.
(b) Vertex D is entered and processed. (c) Vertex D becomes a new vertex of the current
convex hull ADC. (d) Vertex E is entered and processed, E does not become a new vertex of
the current convex hull. (e) The resulting convex hull DCAD.
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Figure 8.31: Concavity tree construction. (a) Convex hull and concave residua. (b) Concavity
tree.

8.3.4 Graph representation based on region skeleton
This method corresponds significantly curving points of a region boundary (Section 8.2.2)
to graph nodes. The main disadvantage of boundary-based description methods is that
geometrically close points can be far away from one another when the boundary is
described—graphical representation methods overcome this disadvantage. Shape prop-
erties are then derived from the graph properties.

The region graph is based on the region skeleton, and the first step is the skeleton
construction. There are four basic approaches to skeleton construction:

• Thinning—iterative removal of region boundary pixels.
• Wave propagation from the boundary.
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• Detection of local maxima in the distance-transformed image of the region.
• Analytical methods.

Expected properties of skeletonization algorithms include [Bernard and Manzanera, 1999]:

• Homotopy – skeletons must preserve the topology of the original shapes/images.
• One-pixel thickness – skeletons should be made of one-pixel thick lines.
• Mediality – skeletons should be positioned in the middle of shapes (with all skeleton

points having the same distance from two closest points on object boundary).
• Rotation invariance – in discrete spaces, this can only be satisfied for rotation angles,

which are multiples of π/2, but should be approximately satisfied for other angles.
• Noise immunity – skeletons should be insensitive to shape-boundary noise.

Some of these requirements are contradictory—noise immunity and mediality cannot be
satisfied simultaneously. Similarly, rotation invariance and one-pixel thickness require-
ments work against each other. While all five requirements contribute to the quality of
resulting skeletons, satisfying homotopy, mediality, and rotation invariance is of major
importance [Manzanera et al., 1999].

Most thinning procedures repeatedly remove boundary elements until a pixel set
with maximum thickness of 1 or 2 is found. In general, these methods can be either
sequential, iteratively directionally parallel, or iteratively fully parallel. The following
MB algorithm is an iteratively fully parallel skeletonization algorithm and it constructs
a skeleton of maximum thickness 2 [Manzanera et al., 1999]. It is simple, preserves
topology (i.e., no single component is deleted or split into several components, no object
cavity is merged with the background or another cavity, and no new cavity is created)
and it is geometrically correct (i.e., objects are shrunk uniformly in all directions and the
produced skeleton lines are positioned in the middle of the objects). While it has limited
rotational invariance, it is computationally fast.

Algorithm 8.9: Fully parallel skeleton by thinning – MB algorithm

1. Consider a binary image consisting of object pixels and background pixels.
2. Identify a set Y of object pixels, for which the thinning mask shown in Figure 8.32a

matches the local image configuration while the restoring mask Figure 8.32b does
not match the local image configuration. This step is performed in parallel for all
object pixels of the image and all π/2 rotations of the masks.

3. Remove all object pixels Y.
4. Repeat the two previous steps as long as Y is nonempty.

A refined version of the MB skeletonization algorithm—called MB2—offers substan-
tially improved rotational invariance while maintaining all other good properties [Bernard
and Manzanera, 1999]. While still computationally fast when compared to other ap-
proaches, it is somewhat slower than Algorithm 8.9.
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(a) (b)

Figure 8.32: Masks for the MB skeletonization algorithm [Manzanera et al., 1999]. We include
all 90-degree rotations of these two. Panel (a) shows the thinning mask (plus all π/2 rotations).
Panel (b) shows the restoring mask (plus all π/2 rotations). The central mask pixel is marked
with a diagonal cross, background pixels are white and object pixels are black.

(a) (b) (c)

Figure 8.33: Masks for the MB2 skeletonization algorithm [Bernard and Manzanera, 1999]—we
include all π/2 rotations of them. Panels (a) and (b) show the thinning masks (plus all π/2
rotations). Panel (c) shows the restoring mask (plus all π/2 rotations). The central mask pixel
is marked with a diagonal cross, background pixels are white and object pixels are black.

Algorithm 8.10: Fully parallel skeleton by thinning – MB2 algorithm

1. Consider a binary image consisting of object pixels and background pixels.
2. Identify a set Y of object pixels, for which at least one of the thinning masks

shown in Figure 8.33a,b matches the local image configuration while the restoring
mask Figure 8.33c does not. This step is performed in parallel for all object pixels
of the image.

3. Remove all object pixels Y.
4. Repeat the two previous steps as long as Y is nonempty.

Examples of MB and MB2 skeletons and the effects on them resulting from mi-
nor changes of object shapes due to variations in segmentation threshold can be see in
Figure 8.34.

Since the MB and MB2 algorithms yield skeleton segments which may have a thick-
ness of 1 or 2, (Figure 8.34b,e) an extra step can be added to reduce those to a thickness
of one, although care must be taken not to break the skeleton connectivity. One-pixel
skeleton thickness can be obtained using an asymmetric two-dimensional thinning algo-
rithm as a post-processing step, in which simple points are removed [Rosenfeld, 1975].
While removal of a simple-point pixel will not alter topology, parallel removal of two or
more of such pixels may result in a topology change. In other words, if all candidate
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(a) Threshold 1 (b) MB (c) MB2

(d) Threshold 2 (e) MB (f) MB2

(g) Original (h) 1-pixel skeleton from (b) (i) 1-pixel skeleton from (c)

Figure 8.34: MB and MB2 skeletons from skeletonization of image in Figure ??a (shown here in
panel (g)). These skeletonization algorithms produce 1- or 2-pixel skeletons. (a) and (d) Binary
images resulting from thresholding of panel (g). (b) and (e) MB skeletons. (c) and (f) MB2
skeletons. (g) Original image. (h) 1-pixel wide MB skeleton of image in panel (a)—derived from
MB skeleton of panel (b). (i) 1-pixel wide MB2 skeleton of image in panel (a)—derived fromMB2
skeleton of panel (c). Note the effect of different threshold on the resulting skeleton—compare
panels (a–c) and (d–f). Courtesy Li Zhang, The University of Iowa.

pixels are removed in parallel, topology may be affected and the skeleton may break into
pieces. The basic idea of obtaining a 1-pixel wide skeleton using this approach [Rosen-
feld, 1975] is therefore to divide the thinning process in substeps and in each substep
remove—in parallel—all pixels that have no neighbor belonging to the object in exactly
one of the four main directions (north, south, east, west). The 4 directions are rotated in
subsequent applications of the parallel pixel removal substeps. The substeps are repeated
until convergence—as long as at least one pixel can be removed during the substep. This
strategy results in a one-pixel wide skeleton while preserving its topology.

A large number of thinning algorithms can be found in the literature [Hildich, 1969;
Pavlidis, 1978] and a useful comparison of parallel thinning algorithms is in [Couprie,
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2005]. Mathematical morphology is another powerful tool used to find region skeletons,
and thinning algorithms which use morphology are given in Section ??; see also [Maragos
and Schafer, 1986], where the morphological approach is shown to unify many other
approaches to skeletonization.

Thinning procedures often use a medial axis transform (also symmetric axis trans-
form) to construct a region skeleton [Pavlidis, 1977; Samet, 1985; Pizer et al., 1987; Lam
et al., 1992; Wright and Fallside, 1993]. Under the medial axis definition, the skeleton
is the set of all region points which have the same minimum distance from the region
boundary for at least two separate boundary points. Examples of such skeletons are
shown in Figures 8.35 and 8.36. Such a skeleton can be constructed using a distance
transform which assigns a value to each region pixel representing its (minimum) distance
from the region’s boundary, and the skeleton is then determined as the set of pixels
whose distance from the region’s border is locally maximal. As a post-processing step,
local maxima can be detected using operators that detect linear features and roof profiles
[Wright and Fallside, 1993]. Every skeleton element can be accompanied by information
about its distance from the boundary—this gives the potential to reconstruct a region as
an envelope curve of circles with center points at skeleton elements and radii correspond-
ing to the stored distance values. Shape descriptions, as discussed in Section 8.3.1 can be
derived from this skeleton but, with the exception of elongatedness, the evaluation can
be difficult. In addition, this skeleton construction is time-consuming, and the result is
highly sensitive to boundary noise and errors. Small changes in the boundary may cause
serious changes in the skeleton—see Figure 8.35. This sensitivity can be removed by first
representing the region as a polygon, then constructing the skeleton. Boundary noise
removal can be absorbed into the polygon construction. A multi-resolution (scale-space)
approach to skeleton construction may also result in decreased sensitivity to boundary
noise [Pizer et al., 1987; Maragos, 1989]. Similarly, the approach using the Marr-Hildreth
edge detector with varying smoothing parameter facilitates scale-based representation of
the region’s skeleton [Wright and Fallside, 1993].

Skeleton construction algorithms do not result directly in graphs, but the transfor-
mation from skeletons to graphs is relatively straightforward. Consider first a 1-pixel
wide skeleton—this is advantageous since any skeleton pixel A with only one neighbor
corresponds to a leaf vertex (end point) of the graph, pixels with 3 or more neighbors are
associated with branching graph nodes (node points), and all remaining skeleton pixels
with 2 neighbors (normal points) translate to arcs between branching and/or leaf ver-
tices. Now consider medial axis skeletons and assume that a minimum radius circle has
been drawn from each point of the skeleton which has at least one point common with a
region boundary: let contact be each contiguous subset of the circle which is common to
the circle and to the boundary. If a circle drawn from its center A has one contact only,

Figure 8.35: Region skeletons; small border changes can have a substantial effect on skeleton.
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(a) (b)

Figure 8.36: Medial axis skeletons [Pavlidis, 1981] overlaid in mid-level gray over original binary
data given in Figure 8.34a,d. Courtesy Kalman Palagyi, University of Szeged, Hungary.

A is a skeleton end point. If the point A has two contacts, it is a normal skeleton point.
If A has three or more contacts, the point A is a skeleton node point.

Algorithm 8.11: Region graph construction from skeleton

1. Label each skeleton point as one of end point, node point, normal point.
2. Let graph node points be all end points and node points. Connect any two graph

nodes by a graph arc (graph edge) if they are connected by a sequence of normal
points in the region skeleton.

It can be seen that boundary points of high curvature have the main influence on the
graph. They are represented by graph nodes, and therefore influence the graph structure.

If other than medial axis skeletons are used for graph construction, end points can
be defined as skeleton points having just one skeleton neighbor, normal points as having
two skeleton neighbors, and node points as having at least three skeleton neighbors. It
is no longer true that node points are never neighbors and additional conditions must
be used to decide when node points should and should not be represented as nodes in a
graph.

8.3.5 Region decomposition
The decomposition approach is based on the idea that shape recognition is a hierarchical
process. Shape primitives—the simplest elements which form the region—are defined at
the lower level. A graph is constructed at the higher level—nodes result from primitives,
arcs describe the mutual primitive relations. Convex sets of pixels are one example of
simple shape primitives.

The solution to the decomposition problem consists of two main steps: The first
step is to segment a region into simpler sub-regions (primitives), and the second is their
analysis. Primitives are simple enough to be described successfully using simple scalar
shape properties (see Section 8.3.1). A detailed description of how to segment a re-
gion into primary convex sub-regions, methods of decomposition to concave vertices, and
graph construction resulting from a polygonal description of sub-regions are given in
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(c) Explain the differences in performance of your algorithm.
(d) Develop a practically applicable thinning algorithm that constructs line shapes from

scanned characters.
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